The ideal numerical method for implicit LES (with no sub-grid scale models) should have very low dissipation AND dispersion errors over the resolvable range of wave numbers, but dissipative for non-resolvable high wave numbers. In this way, the simulation will resolve a wide turbulent spectrum, while damping out the non-resolvable small eddies to prevent energy pile-up, which can drive the simulation divergent.
We want to emphasize the equal importance of both numerical dissipation and dispersion, which can be generated from both the space and time discretizations. It is well-known that standard central finite difference (FD) schemes and energy-preserving schemes have no numerical dissipation in space. However, numerical dissipation can still be introduced by time integration, e.g., explicit Runge-Kutta schemes.
We recently analysed and compared several 6th-order spatial schemes for LES: the standard central FD, the upwind-biased FD, the filtered compact difference (FCD), and the discontinuous Galerkin (DG) schemes, with the same time integration approach (an Runge-Kutta scheme) and the same time step. The FCD schemes have an 8th order filter with two different filtering coefficients, 0.49 (weak) and 0.40 (strong). We first show the results for the linear wave equation with 36 degrees-of-freedom (DOFs) in Figure 1. The initial condition is a Gaussian-profile and a periodic boundary condition was used. The profile traversed the domain 200 times to highlight the difference.
Figure 1. Comparison of the Gaussian profiles for the DG, FD, and CD schemes
Note that the DG scheme gave the best performance, followed closely by the two FCD schemes, then the upwind-biased FD scheme, and finally the central FD scheme. The large dispersion error from the central FD scheme caused it to miss the peak, and also generate large errors elsewhere.
Finally simulation results with the viscous Burgers' equation are shown in Figure 2, which compares the energy spectrum computed with various schemes against that of the direct numerical simulation (DNS).
Figure 2. Comparison of the energy spectrum
Note again that the worst performance is delivered by the central FD scheme with a significant high-wave number energy pile-up. Although the FCD scheme with the weak filter resolved the widest spectrum, the pile-up at high-wave numbers may cause robustness issues. Therefore, the best performers are the DG scheme and the FCD scheme with the strong filter. It is obvious that the upwind-biased FD scheme out-performed the central FD scheme since it resolved the same range of wave numbers without the energy pile-up.